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PROBABILITY DISTRIBUTIONS OF THE VELOCITY 

FLUCTUATIONS IN AXISY~TRICAL TURBULENT WAKES 

V. I. Bukreev and V. A. Kostomakha UDC 532.517.4 

Experimental data are reported on the one-dimensional probability distribution functions 
and up to the sixth statistical moments of the turbulent velocity fluctuations in hydrodynam- 
ic wakes of bluff and streamlined bodies. The data complement similar existing information 
for various turbulent flows: after a grid [I, 2]; in a two-dimensional wake [3]; in circu- 
lar [4] and plane [5] jets; in a boundary layer [6]; in a circular pipe [17], etc. The prob- 
lems of self-similarity of the investigated flow, the influence of the conditions of its 
evolution on the fluctuation characteristics in the self-similarity zone, and the role of 
intermittency at the wake boundary are discussed on the basis of the experimental data. 

i. Experiments have been carried out in a low-turbulence wind tunnel with the applica- 
tion of a DISA Elektronik hot-wire anemometer system with a linearizer. Either a sphere of 
diameter D =i cm or a body of revolution (set up at zero angle of attack) with a midsection 
diameter D =I cm and an 8:1 elongation was suspended on wires of diameter 0.05 mm in the tun- 
nel working section, which had a length of 4 m and a cross section of 40 • cm and was fit- 
ted with triangular moldings in the corners to diminish secondary flows. In both cases the 
Reynolds number Re =U~D/~ =106 (where U~ is the freestream velocity and ~ is the kinematic 
viscosity coefficient). ~asurements have shown that this value of Re is large enough for 
the flow in the wake of the sphere to be self-similar with respect to the longitudinal coor- 
dinate and, hence, for similarity to hold with respect to the Reynolds number. To obtain 
similarity with respect to Re and self-similarity in the wake of the elongated body a turbu- 
lence generator in the form of a ring of diameter 8 mm and thickness 0~ mm was set up in 
the bow region of the body. As a result, the drag forces F x on the profiled body and the 
sphere did not differ appreciably, and so the drag coefficients Cx defined by the relation 

f x = c ~ p S U % / 2 ,  S = ~D2 / 4 ,  

were equal to 0.39 and 0.48 respectively. The small difference in the drag forces fit in 
quite ~ell with one of the objectives of the experiments, which was to show that the charac- 
teristics of a wake in the self-similar region are not determined solely by the drag and free- 
stream velocity, but depend strongly on the configuration of the body. 

Below, we use a cylindrical coordinate system x, r, e, which is attached to the body 
with its origin located at the trailing edge of the body and its x axis directed downstream. 
In addition to the constants U= and D, we also use the following functions of x as typical 
scales of the velocity and length: 

= 1 
which are based on considerations of self-similarity of the flow. Here Xo is the virtual 
origin of the wake and in the given experiments is close to zero for both bodies [8]. 

~e probability density function p(e) of the stationary (in the statistical sense) hot- 
wire signal e(t) was estimated by means of an Intertechnique Histomat-S random-process analyz- 
er. The signal e(t) was related to the longitudinal component of the velocity u(t) in the 
wake by the linear equation e =a +ku, where a and k are constants determined in static cali- 
bration of the hot-wire anemometer. The following statistical characteristics were deter- 
mined in subsequent processing on a general-purpose computer: the probability density func- 
tion of the velocity fluctuations 
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] (u) p (e) j de 
= ~ J = kp (a ~ ku); 

the statistical moments 

U =  ! u/ (u) du, a "~ -- j" ( u - - U )  z ] (u) du, 

o o  

~,~ = ,C: (u- -  U)" f (u) du, n=3,4,5,6; 
the  d e n s i t y  f u n c t i o n  o f  the  c e n t e r e d  and n o r m a l i z e d  f l u c t u a t i o n s  

~(Uo) = ~/(ouo), uo = (n -- U)/~ 

the characteristic function 

, ( i s ) =  ~ ~(u0) e auo, i 

The a v e r a g e  v e l o c i t y  and i n t e n s i t y  o f  the  f l u c t u a t i o n s  were a l s o  e s t i m a t e d  i n d e p e n d e n t l y  by 
a p p r o p r i a t e  t ime a v e r a g i n g  o f  r e a l i z a t i o n s  o f  u ( t ) .  

2.  To i n v e s t i g a t e  the  p l a u s i b i l i t y  o f  t he  c o n c l u s i o n s  drawn in  the  p r e s e n t  s t u d y  we 
have c a r r i e d  ou t  a t h e o r e t i c a l  (by a l g o r i t h m s  d e s c r i b e d ,  f o r  example ,  i n  [9] )  and e x p e r i m e n -  
t a l  a n a l y s i s  o f  the  measurement  e r r o r s  a s s o c i a t e d  w i t h  the  f i n i t e  s i z e s  o f  the  s t a t i s t i c a l  
s ample s ,  t ime and l e v e l  q u a n t i z a t i o n  o f  the  s i g n a l s ,  u n c e r t a i n t y  i n  the  p l acemen t  o f  the  h o t -  
w i r e  p robe  a t  a s p e c i f i e d  p o i n t  o f  the  f low (x, r ) ,  e t c .  The e x p e r i m e n t a l  p r o c e d u r e  f o r  
e s t i m a t i n g  the  e r r o r s  e n t a i l e d  p e r f o r m i n g  m u l t i p l e  r e p e a t e d  measurements  under  i d e n t i c a l  con -  
d i t i o n s  a t  a s e r i e s  o f  c h a r a c t e r i s t i c  p o i n t s  (x,  r ) .  l~ae v a r i a n c e  g~ and c o e f f i c i e n t  o f  
v a r i a t i o n  ~Q o f  t he  e r r o r  i n  a p a r t i c u l a r  p r o b a b i l i t y  c h a r a c t e r i s t i c  "Q was c a l c u l a t e d  a c c o r d -  
i ng  t o  the  f o r m u l a s  

N 
~-- ( Q ~ -  <Q>)~-, ~q .... <q>, 
3=1  

where Q4 is the measurement result in the j-th test; <Q> is the arithmetic mean of the 
resultsJfor N repeated measurements. As an illustration, Fig. 1 gives data on <~>, ~, g~ 
obtained by this procedure for the probability density function Q = ~(Uo) with N =12 in the 
cross section x/D =I00 of the wake of the elongated body at the points r/~ c =0 (Fig. la) and 
r/l c =0.4 (Fig. ib): i) <~> ; 2) o~; 3) ~. 

It must be noted that reasonably large samples were used in the given experiments, con- 
taining more than 2-106 discrete values of the signal e(t) recorded with a constant increment 
At =10 -4 sec. The signal was level-quantized into 256 equal intervals. This ensured a small 
absolute error o~. As for the relative error e ~ , the signal e(t) always contains occasional 
large excursions, which have a very low probability and for which even such a large sample 
is inadequate. This fact is mirrored in the behavior of curves 3 in Fig. I. 

Additive noise is always present in the analyzed electrical signal e(t) as a result of 
electronic noise in the apparatus and ambient freestream turbulence in the wind tunnel. 
This was true of the present work, and special investigations showed that electronic noise 
accounted for the bulk of the signal noise (up to 70% in intensity). The role of the noise 
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was inconsequential in the vicinity of the wake axis, because the useful signal exceeded it 
tenfold in intensity. On approaching the boundary of the wake, however, the relative con- 
tribution of the noise increases, so that beyond the limits of the wake the hot-wire signal 
represents pure noise. 

Let co(t) be the useful signal of interest, and e,(t) the noise function. Assuming that 
the noise is additive and does not depend on the useful signal, as is certainly true if e, 
is electronic noise and is acceptable as a first approximation if e, represents ambient tur- 
bulence, we obtain the familiar relation for the density functions: 

p (e) = ,I Po (eo) P, (eo - -  e) deo, 

where Po and p, are the characteristics of the useful signal and the noise. With the intro- 
duction of a correction the problem is to determine po when p and p, are known. Unfortu- 
nately, however, this mathematical problem is ill-posed in the sense that slight variations 
in the input data will produce large errors in the results of the calculations. 

Attempts to solve this problem by regularization leads to the conclusion that it is 
better in tests of this nature to leave p(e) uncorrected, rather than to distort the informa- 
tion by trying to solve an ill-posed problem. Results in which noise effects were found to 
be appreciable will be discussed below. 

In regard to estimation of the statistical moments, the problem of correcting for noise 
effects is well-posed, and the experimental data used below are given with acorrection 
according to the algorithms 

u o  = u - u , ,  = = 

* 2 0 0 * 2 * ~ = ~ 8 - - ~ 8 - - t 5 c , ~ 4 - - 2  ~ ~-- t5%~4, 

in which the asterisk designates noise characteristics obtained by analyzing the signal from 
a probe removed from the wake. These algorithms are valid for independent additive noise. 

3. The experimental data on the density functions are given in Fig. 2 (for the wake of 
the sphere) and Fig. 3 (for the wake of the elongated body). The points are numbered as fol- 
lows: i) x/D =i00; 2) 150; 3) 200; 4) 250. The data for different points with the same 
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value r/l c =const are shifted vertically relative to one another by an arbitrary constant 
interval. For r/l c =1.2 in the case of the sphere and r/~ c =0.6 in the case of the elongated 
body, the useful signal-to-noise intensity ratio is close to unity, and so the influence of 
noise is appreciable here. For smaller values of r/l c indicated in the figures, the relative 
contribution of noise is negligible. 

The data indicate that the functions ~(uo) are self-similar in the given interval of 
x/D, i.e., they depend only on r/Ic, but differently for each of the bodies. At like points 
of the wakes after the bodies with different configurations, the data differ considerably. 
This result is completely consistent with the analogous result obtained for other probability 
characteristics [8]. 

~le density functions are not Gaussian at any point of the turbulent wake. For the 
sphere this fact is observed directly in Fig. 2, where the graphs of ~(uo) are skewed even on 
the wake axis. In the case of the elongated body, departures from a normal distribution near 
the wake axis appear only for the principal moments of even orders (see below). This conclu- 
sion is consistent with the result obtained for other turbulent flows. 

~le appreciable difference between the self-similar wakes of the sphere and the elonga- 
ted body is attributable to the difference in the nature of the intermittence flow at the 
boundary of the wake [i0], as exhibited by the fact that a probe located in the intermittency 
zone can be at times in a region of turbulent motion, at others in a region of nonturbulent 
motion, all in random fashion. As a result, the output signal is the logical sum of two 
random processes: 

e( t )  = e , ( t )  U e2( t ) ,  

where el corresponds to fluctuations of turbulent origin, and e2 to fluctuations of nonturbu- 
lent origin. Let us suppose that the probability of being in a turbulent region is y (which 
by definition is the so-called intermittency factor) and that the probability of being in a 
nonturbulent region is 1 -- y. These two events are incompatible and form a complete group. 
Then 

p ( e )  = ~, p , ( e )  -i- (1 - -  ? ) p ~ ( e ) ,  

where p~ and p2 are the density functions of the signals e~ and ei. 

Let each of the signals el and e2 have a normal distribution function: 
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p (O = - - -  cq /' i = t ,  2, 

hut let there be a difference between them in at least one of the parameters <el> or o i. 
Then p is no longer normal. As an illustration, Fig. 4 shows the result of a calculation 
for y =0.5, <e~> =--2, <eu> =0, al =5, oa =i, the solid curve representing the normalized 
[eo is related to e by the expression eo = (e -- <e>)/o)] density function of the sum signal. 
A very pronounced difference is observed between this distribution function and the Gaussian 
function represented by the dashed curve with parameters <e> and o calculated according to 
the relations 

<e> = v<e~> § (1 - -  v)<e2>, 

o 2 ---- VO~ + ( |  - -  V) o~ + ? (1 - -  V) (<el> - -  <e2>) 2. 

~lis example, taken in conjunction with the experimental fact that the distributions of 
the fluctuations deviate from a Gaussian law even in turbulent flows lacking a clear-cut 
intermittency, suggests that not only simple summation, but also logical summation of turbu- 
lent eddy formations of different scales should be used in describing turbulence. 

Experimental data on the statistical moments from the third through the sixth are shown 
in Fig. 5 for the wake of the sphere and in Fig. 6 for the wake of the elongated body. Fluc- 
tuations that occur infrequently but with large absolute values provide a significant contri- 
bution to these moments. We retain the same nomenclature as in Figs. 2 and 3 and use the 
scales Uc and I c for normalization. In this normalization the experimental points for differ- 
ent values of x/D should lie on a single curve if the flow is self-similar also with respect 
to these probability characteristics. The self-similarity hypothesis is not refuted within 
the experimental error limits. Experimental data for the lower moments U and o in the inves- 
tigated flow are given in [8]. A test of the statistical hypothesis that the probability 
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distributions are Gaussian on the information obtained about the even-order moments show that 
it is inconsistent even for points on the wake axis after the elongated body, where the dis- 
tributions themselves are symmetric. 

Figure 7 shows data on the higher moments for all three components of the velocity vec- 
tor in the wake of the elongated body for x/D =I00. The curves are numbered according to 
the comRonents: i) longitudinal~ 2) radial; 3) tangential. On the wake axis the character- 
istics of the radial and tangential components should coincide, as was indeed confirmed in 
the experiments. These components are close to one another and do not deviate as much from 
a normal law as the longitudinal component or as at other points of the wake cross section. 
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